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Probabilistic measures of cost-effectiveness
Ionut Bebu,a*† Thomas Mathewb and John M. Lachina

Several probability-based measures are introduced in order to assess the cost-effectiveness of a treatment. The
basic measure consists of the probability that one treatment is less costly and more effective compared with
another. Several variants of this measure are suggested as flexible options for cost-effectiveness analysis. The pro-
posed measures are invariant under monotone transformations of the cost and effectiveness measures. Interval
estimation of the proposed measures are investigated under a parametric model, assuming bivariate normality,
and also non-parametrically. The delta method and a generalized pivotal quantity approach are both investi-
gated under the bivariate normal model. A non-parametric U-statistics-based approach is also investigated for
computing confidence intervals. Numerical results show that under bivariate normality, the solution based on
generalized pivotal quantities exhibits accurate performance in terms of maintaining the coverage probability
of the confidence interval. The non-parametric U-statistics-based solution is accurate for sample sizes that are
at least moderately large. The results are illustrated using data from a clinical trial for prostate cancer therapy.
Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

Identifying interventions that are cost-effective is clearly an important objective [1,2]. No single number
can capture the multifaceted interplay between costs and benefits, and therefore, various measures of
cost-effectiveness that are informative, intuitive, and simple to explain are required to make informed
decisions, along with statistical procedures that are accurate and robust with respect to assumptions.
Several such measures have been proposed in the literature [3]. The incremental cost-effectiveness ratio
(ICER) is defined as the ratio between the difference of expected costs and the difference of expected
effectiveness. Although very easy to interpret as the additional cost per unit of effectiveness gained,
being a ratio, the ICER is difficult to interpret in certain situations. For example, when the difference
in effectiveness is close to zero, the ICER approaches ±∞ depending on the sign of the difference in
cost. To address this issue, another measure of cost-effectiveness has been proposed, the incremental net
benefit (INB), that is, the difference between the incremental cost and the incremental effectiveness after
multiplying the latter with a willingness-to-pay parameter. Both measures are functions of population
means and therefore describe average effects. Various approaches, both parametric (e.g., delta method
and Fieller’s theorem) and non-parametric (several bootstrap versions) have been proposed to construct
confidence intervals for ICER and INB [4–11].

An alternative approach is to conceptualize the relative performance of an intervention at the individual
level. In other words, when comparing two potential treatments for a particular subject, it is important
to assess the probability that the first treatment will be less costly and more effective compared with
the second one. The cost-effectiveness measure proposed herein, named cost-effectiveness probability
(CEP), is this probability. Randomized clinical trial data can be used to evaluate this parameter.

A useful property of the proposed CEP is that it is invariant with respect to (possibly different) mono-
tone transformations of cost and effectiveness, a property which is not shared by ICER and INB [3, 12].
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Moreover, because these measures are defined in terms of expected values of cost and effectiveness,
their interpretation and applicability may be more difficult with skewed data [13], which is usually the
norm, especially for cost [14]. This is not the case for the proposed CEP. A somewhat similar measure of
cost-effectiveness is a variation of the cost-effectiveness acceptability curve (CEAC) proposed by Willan
in [15]. Unlike the CEP, the CEAC is the probability that the net benefit is larger for the first treatment
than for the second one. However, this measure depends on the willingness-to-pay parameter.

Here, we would like to emphasize that the proposed probabilistic measures are not meant to replace
the traditional measures such as the ICER and INB that are functions of population averages. Rather,
the proposed measures go beyond averages and complement the traditional approaches by considering
proportions corresponding to subsets of the population for which a treatment is cost-effective.

The paper is organized as follows. We start by introducing the CEP parameters in the next section. Then,
both parametric and non-parametric statistical methods are used to derive tests and confidence intervals
for such measures. The parametric approaches investigated include the delta method and a method based
on the generalized pivotal quantity (GPQ), while the non-parametric approach is based on U-statistics.
The methods are compared through simulations. The methodology is illustrated using data from a clinical
trial for prostate cancer therapy [3]. The paper concludes with a brief discussion.

2. The probabilistic measures

Consider a randomized trial with two arms, and let (C,E) be the bivariate random variable denoting the
cost (lower is better) and effectiveness (higher is better). Let (C1,E1) and (C2,E2) be random variables
denoting the cost and effectiveness for two treatments. Furthermore, let 𝜇C1 and 𝜇C2 be the popula-
tion mean costs corresponding to the first and second treatments, respectively, and let 𝜇E1 and 𝜇E2
respectively denote the corresponding population mean effectiveness parameters. Here, we shall consider
the case of continuous costs and continuous effectiveness only. The standard approaches in evaluating
the cost-effectiveness of the first treatment over the second include the use of the incremental ICER,
defined as

ICER =
𝜇C1 − 𝜇C2

𝜇E1 − 𝜇E2
,

or the INB

INB = 𝜆(𝜇E1 − 𝜇E2) −
(
𝜇C1 − 𝜇C2

)
,

where the quantity 𝜆 is referred to as the willingness-to-pay parameter, defined as the monetary value
assigned by the payer to each unit of effectiveness gained [16]. While these are reasonable measures in
terms of overall average cost-effectiveness, they do not provide information concerning the proportion
of subjects for whom a treatment is cost-effective. Our probabilistic measures are meant to provide such
information.

Assume a random distribution of costs and a measure of effectiveness among the subjects within the
two treatment groups. For two subjects, one from each group, the first treatment is more cost-effective
than the second treatment if

C1 ⩽ C2 and E1 ⩾ E2. (1)
We note that the region defined by (1) is the southeast quadrant of the cost-effectiveness plane. Define
the cost-effectiveness proportion (CEP) as the probability that the intervention is more cost-effective for
a random subject in the first group than for a random subject in the second group,

CEP = P
(
C1 ⩽ C2, E1 ⩾ E2

)
. (2)

Clearly, large values of the CEP are desirable. An interesting feature of (2) is that it is invariant with
respect to monotone transformations of both cost and effectiveness. Therefore, with continuous cost and
effectiveness, one can assume that cost and effectiveness follow a bivariate normal distribution after
some monotone transformation. This is of course under the assumption that transformation to normality
is possible.

The parameter CEP and appropriate variants of it offer considerable flexibility in the assessment of
cost-effectiveness. For example, if the first treatment is expected to be not only more effective but also
more costly (i.e., the northeast quadrant of the cost-effectiveness plane), CEP can be modified as

CEP(𝛿C) = P
(
C1 ⩽ C2 + 𝛿C, E1 ⩾ E2

)
,
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for a specified upper limit 𝛿C of the increase in cost. Cost-effectiveness can be concluded if CEP(𝛿C)
is large. The quantity 𝛿C can be thought of as a willingness-to-pay parameter. Conversely, one can also
determine the threshold 𝛿C after specifying a value for CEP(𝛿C). A further modification could be

CEP
(
𝛿C, 𝛿E

)
= P

(
C1 ⩽ C2 + 𝛿C, E1 ⩾ E2 + 𝛿E

)
,

which includes another threshold 𝛿E for the effectiveness. The motivation for including such a threshold is
that it may not be enough to have increased effectiveness; we would like to have a ‘clinically meaningful
improved effectiveness’, specified in terms of 𝛿E.

Figure 1 describes the regions of interest for CEP(𝛿C, 𝛿E). The right panel of Figure 1 gives a plot
of the region where INB is positive, which is given by ΔC ⩽ 𝜆 ⋅ ΔE, where ΔC = 𝜇C1 − 𝜇C2 and
ΔE = 𝜇E1 −𝜇E2. It is clear that the INB criterion can select an intervention that is not only less costly but
also less effective (shaded area in the south-west quadrant). On the other hand, the plot on the left panel
shows that as a criterion, the CEP is defined in terms of a region that is free from the aforementioned
drawback. Furthermore, 𝛿C and 𝛿E can be subjectively chosen without relying on the data. This certainly
does not rule out the possibility of data driven choices of these quantities.

Yet another possibility is to consider conditional probabilities such as P(C1 ⩽ C2 |E1 ⩾ E2), which
can be used to investigate how likely it is that the first treatment is less costly for a subject for whom it is
also more effective.

Regarding the definition of the CEP in (2), a point to remember is that the probability in (2) and the
probability P

(
C1 ⩾ C2, E1 ⩽ E2

)
can both be significantly different from zero. The latter probability

corresponds to the northwest quadrant of the cost-effectiveness plane and can be used to assess the pro-
portion of patients for whom the first treatment is more costly and less effective. Therefore, treatment 1
is preferable to treatment 2 if the probability of falling in the southeast quadrant is larger than the proba-
bility of the northwest quadrant. In view of this, the following parameter, denoted by ΔCEP, can be used
to assess the effectiveness of the first treatment over the second:

ΔCEP = P
(
C1 ⩽ C2, E1 ⩾ E2

)
− P

(
C1 ⩾ C2, E1 ⩽ E2

)
.

A positive value of ΔCEP indicates that the first treatment is to be preferred over the second; a neg-
ative value leads to the opposite conclusion. Through algebraic manipulation of joint and marginal
probabilities, it can be shown that ΔCEP = P(C1 ⩽ C2) − P(E1 ⩽ E2).

In the next section, we shall develop inference concerning the parameter CEP defined in (2); however,
the methodologies can be easily adapted for inference concerning the other parameters defined previously.

Figure 1. Regions of interest (shaded areas) described by the CEP(𝛿C, 𝛿E) (left) and INB (right). CEP, cost-
effectiveness probability; INB, incremental net benefit.
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3. Statistical inference for CEP

Let (C1j,E1j), j = 1,… n1, and (C2k,E2k)), k = 1,… n2, be random samples of sizes n1 and n2 from the
bivariate distributions of (C1,E1) and (C2,E2), respectively. We shall now investigate both parametric and
non-parametric inferences for the parameter CEP in (2). We shall also briefly indicate how our methods
can be adopted for inference concerning the other probabilistic measures, such as ΔCEP.

3.1. Parametric inference

Parametric inference is developed under the assumption of bivariate normality. As already noted, this is
justified whenever a transformation to normality is possible. Thus let

(
Ci,Ei

)
∼ N

(
𝜇i,Σi

)
,

i = 1, 2, where we write 𝜇i = (𝜇Ci, 𝜇Ei)′, Σi = 𝜎ill′ , and i, l, l′ = 1, 2.
One has

CEP = P(C1 − C2 ⩽ 0&E1 − E2 ⩾ 0)
= P(C1 − C2 ⩽ 0) − P(C1 − C2 ⩽ 0 & E1 − E2 < 0)
= Φ

(
0;𝜇C1 − 𝜇C2, 𝜎111 + 𝜎211

)
− Φ2

(
(0, 0)′; (𝜇C1 − 𝜇C2, 𝜇E1 − 𝜇E2)′,Σ1 + Σ2

)
,

(3)

where Φ and Φ2 denote the cumulative distribution functions of the univariate and bivariate normal
distributions, respectively.

A point estimate for CEP is obtained by replacing the population parameters in (3) with their sample
estimates. The delta method [17] can be employed to derive large sample tests and confidence intervals
for CEP and ΔCEP. Details are provided in Appendix A.

3.1.1. The generalized pivotal quantity approach. An alternative parametric approach is based on the
idea of a GPQ introduced by Weerahandi [18]. We first review some notations and basic results and then
introduce the GPQ approach. Further details can be found in [19].

Let Xi, i = 1, 2, …, n, be independent p×1 observations following the multivariate normal distribution

Xi ∼ N(𝜇,Σ) ,

where the mean vector 𝜇 and the covariance matrix Σ are unknown parameters. An unbiased estimator
of 𝜇 is �̂� = X̄, the sample mean vector. An unbiased estimator of Σ is given by

Σ̂ =
n∑

i=1

(
Xi − X̄

) (
Xi − X̄

)′ ∕(n − 1) ,

and we have the distributions

X̄ ∼ N
(
𝜇,

1
n
Σ
)
, (n − 1)Σ̂ ∼ Wp(Σ, n − 1) ,

where Wp(Σ, n−1) denotes the p-dimensional Wishart distribution with scale matrix Σ and n−1 degrees
of freedom.

A GPQ for a parameter is a function of random variables and their observed values that satisfies two
conditions: (i) given the observed data, the GPQ has a distribution that is free of the unknown parameters
and (ii) the ‘observed value’ of the GPQ (obtained by replacing the random variables by their respective
observed values) is free of any nuisance parameters and is often equal to the parameter of interest [18,19].
Let X̄o and Σ̂o denote the respective observed values of X̄ and Σ̂. Then the GPQs for Σ and 𝜇, say TΣ and
T𝜇, have the following representations [20]:

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3976–3986
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TΣ =
[
Wp

(
Σ̂−1

o , n − 1
)]−1

T𝜇 = X̄o − T1∕2
Σ ⋅ Z∕

√
n ,

(4)

so that TΣ is the inverse of a random draw from a Wishart distribution with scale matrix Σ̂−1
o and

n − 1 degrees of freedom. Here, Z is a random draw from N(0, Ip), and T1∕2
Σ denotes the positive definite

square root of TΣ. A GPQ for the CEP (say, TCEP) is obtained by replacing the parameters in (3) with the
respective GPQ of each in (4). That is,

TCEP = Φ
(
0;T𝜇C1

− T𝜇C2
,T𝜎111

+ T𝜎211

)
− Φ2

(
(0, 0)′; (T𝜇C1

− T𝜇C2
,T𝜇E1

− T𝜇E2
)′,TΣ1

+ TΣ2

)
,

(5)

where T𝜇i
= (T𝜇Ci

,T𝜇Ei
) and TΣi

are the GPQs for the mean vector and variance–covariance matrix in
group i, i = 1, 2. These GPQs are obtained as given in (4).

The percentiles of the distribution of TCEP provide confidence limits for the CEP. Because these
quantiles do not have a closed form, a Monte Carlo approach can be employed as follows.

(1) Using the given data, compute the observed values X̄oi and Σ̂oi, i = 1, 2.
(2) For i = 1, 2, generate TΣi

∼
[
Wp

(
Σ̂−1

oi , n − 1
)]−1

and Zi ∼ N(0, I2), all independent.

(3) Let T𝜇i
= X̄oi − T1∕2

Σi
⋅ Zi∕

√
ni, i = 1, 2.

(4) Obtain TCEP using (5).
(5) Repeat steps 1–4 M times and obtain M values for TCEP. The 2.5th and 97.5th percentiles of this

vector provide a 95% confidence interval for the CEP.

In order to obtain a GPQ for the measure ΔCEP defined in Section 2, we note that

ΔCEP = Φ(0;𝜇C1 − 𝜇C2, 𝜎111 + 𝜎211) − Φ(0;𝜇E1 − 𝜇E2, 𝜎122 + 𝜎222) . (6)

A GPQ for ΔCEP can now be obtained by replacing the parameters in (6) with their GPQs in (4), and
confidence intervals can be constructed using the Monte Carlo approach described previously.

3.2. Non-parametric inference

The non-parametric bootstrap can be easily implemented to construct tests and confidence intervals for
the CEP in (2). Bootstrap samples are drawn from each group, where the selection is at the subject
level. This assures that the within-subject correlation between cost and effectiveness is preserved
and accounted for. Implementation of the bootstrap requires the evaluation of the quantity defined in
Equation (8) for each bootstrap sample. However, notice that as the sample sizes increase, evaluating (8)
for each bootstrap sample is computationally very expensive. Thus, an alternative approach, based on
U-statistics, is proposed.

3.2.1. A U-statistic approach. For an inference on CEP without any distributional assumptions, let

u((C1j,E1j), (C2k,E2k)) =
{

1 , if C1j ⩽ C2k & E1j ⩾ E2k
0 , otherwise .

(7)

An unbiased estimator of the CEP can be obtained using the U-statistic

U = 1
n1 ⋅ n2

n1∑
j=1

n2∑
k=1

u
((

C1j,E1j

)
,
(
C2k,E2k

))
. (8)

Statistical inference for the CEP can be based on the large sample distribution of U-statistics [17]:√
N(U − CEP) ∼ N

(
0, 𝜎2

U

)
, (9)

where

𝜎2
U = N

n1
𝜉10 +

N
n2

𝜉01, (10)
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with
𝜉10 = Cov

(
u
(
X1,Y1

)
, u

(
X1,Y

′
1

))
𝜉01 = Cov

(
u
(
X1,Y1

)
, u

(
X′

1,Y1

))
,

where X1 (= (C1,E1)) and X′
1 refer to values of cost and effectiveness for two different subjects from the

first group, and likewise Y1,Y
′
1 from the second group, all independent, and N = n1 + n2.

Let X ≻ Y denote the event that subject X has lower cost and higher effectiveness than subject Y , that
is, satisfies (1). Then, the terms in (10) can be further simplified, for example,

𝜉10 = P
(
X1 ≻ Y1 &X1 ≻ Y ′

1

)
−
[
P
(
X1 ≻ Y1

)]2

𝜉01 = P
(
X1 ≻ Y1 &X′

1 ≻ Y1

)
−
[
P
(
X1 ≻ Y1

)]2
.

(11)

Let

Sjk = u
(
Xj,Yk

)
, Sj⋅ =

∑
k

Sjk , S⋅k =
∑

j

Sjk,

j = 1,… , n1, k = 1,… , n2. The terms in (11) can be estimated as follows:

P̂(X1 ≻ Y1) =
1

n1 ⋅ n2

∑
j,k

Sjk

P̂
(
X1 ≻ Y1 &X1 ≻ Y ′

1

)
=

∑
j Sj⋅

(
Sj⋅ − 1

)
n1 ⋅ n2 ⋅

(
n2 − 1

)
P̂
(
X1 ≻ Y1 &X′

1 ≻ Y1

)
=

∑
k S⋅k

(
S⋅k − 1

)
n2 ⋅ n1 ⋅

(
n1 − 1

) .

(12)

Then hypothesis tests and confidence intervals for the CEP can be obtained using the asymptotic
distribution in (9), with 𝜎2

U estimated using (10), (11), and (12).
This approach can be easily adapted for inference regarding CEP(𝛿C, 𝛿E) and ΔCEP by modifying the

kernel function (7) appropriately. For example, inference on ΔCEP can be based on the U-statistic

V = 1
n1 ⋅ n2

n1∑
i=1

n2∑
j=1

v
((

Ci,Ei

)
,
(
Cj,Ej

))
, (13)

with

v
((

Ci,Ei

)
,
(
Cj,Ej

))
= 1{Ci⩽Cj} − 1{Ei⩽Ej},

where 1{Ci⩽Cj} and 1{Ei⩽Ej} are indicator functions. Further details are provided in Appendix B.

4. Numerical results

In order to assess the performance of the proposed methods, we conducted some simulations assuming
bivariate normality for cost and effectiveness. It is worth reiterating that the bivariate normality alone
is sufficient after (possibly different) transformations of cost and effectiveness because the measures
(probabilities) are invariant to such transformations. The procedures compared in the simulations include
the delta method (denoted by delta), the GPQ method (GPQ), and the non-parametric U-statistic-based
approach (U-statistic). The non-parametric bootstrap was found to be too computationally intensive to be
included in the simulations. The simulation setup is along the lines of a previous simulation study [21]:

𝜇1 = (6, 8)′ , Σ1 =
(

1.2 𝜎112
𝜎112 6

)
𝜇2 = (𝜇21, 10)′, Σ2 =

(
1.6 𝜎212
𝜎212 8

)
,

(14)

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3976–3986
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Table I. Simulated coverage probabilities of the different confi-
dence intervals for the CEP under a bivariate normal model for
cost and effectiveness and for the parameter choices in (14) and
a nominal level of 95%.

n 𝜌 𝜇21 CEP Delta GPQ U-statistic

50 −0.5 7 0.27 0.9470 0.9580 0.9410
50 0.1 7 0.20 0.9492 0.9548 0.9352
50 0.5 7 0.15 0.9548 0.9542 0.9252
50 −0.5 8 0.29 0.9426 0.9518 0.9348
50 0.1 8 0.26 0.9502 0.9512 0.9332
50 0.5 8 0.22 0.9412 0.9540 0.9344
100 −0.5 7 0.27 0.9550 0.9558 0.9426
100 0.1 7 0.20 0.9526 0.9526 0.9420
100 0.5 7 0.15 0.9598 0.9422 0.9308
100 −0.5 8 0.29 0.9442 0.9510 0.9398
100 0.1 8 0.26 0.9482 0.9544 0.9420
100 0.5 8 0.22 0.9512 0.9528 0.9416
150 −0.5 7 0.27 0.9478 0.9492 0.9426
150 0.1 7 0.20 0.9550 0.9512 0.9426
150 0.5 7 0.15 0.9606 0.9500 0.9416
150 −0.5 8 0.29 0.9486 0.9492 0.9462
150 0.1 8 0.26 0.9486 0.9494 0.9448
150 0.5 8 0.22 0.9498 0.9466 0.9398
200 −0.5 7 0.27 0.9496 0.9522 0.9472
200 0.1 7 0.20 0.9604 0.9562 0.9514
200 0.5 7 0.15 0.9660 0.9486 0.9440
200 −0.5 8 0.29 0.9506 0.9476 0.9480
200. 0.1 8 0.26 0.9530 0.9514 0.9484
200 0.5 8 0.22 0.9484 0.9514 0.9498

CEP, cost-effectiveness probability; GPQ, generalized pivotal quantity.

where 𝜇21 = 7, 8, 𝜎112 = 𝜌 ⋅
√

1.2 × 6, 𝜎212 = 𝜌
√

1.6 × 8, with 𝜌 = −0.5, 0.1, 0.5, and n1 = n2 =
50, 100, 150, 200. The proposed methods are compared through simulations (5000 simulations) in terms
of coverage probabilities of the 95% confidence intervals, and the results are reported in Table I.

The GPQ approach provides extremely accurate confidence intervals, regardless of the sample size and
parameter configurations. The U-statistic procedure is slightly liberal for small sample sizes (n = 50 and
100), but it performs very well for n = 150 and 200. The confidence intervals obtained using the delta
method seem to depend on the sign of the correlation between cost and effectiveness, with over-coverage
for positive correlations.

Therefore, if bivariate normality can be assumed (possibly after transformations) for cost and effective-
ness, the GPQ approach is recommended regardless of sample size, while the distribution-free U-statistic
approach performs well in most cases of practical importance.

5. Illustration

The proposed methods are now illustrated using data from a trial of prostate cancer therapy [3]. Briefly,
a total of 114 subjects with symptomatic, hormone-resistant prostate cancer were randomized to either
prednisone alone (n1 = 61) or prednisone and mitoxantrone (n1 = 53) and were followed until death.
The effectiveness was expressed as quality-adjusted life weeks, while the costs are in Canadian dollars.
The reader is referred to [3] and [4] for detailed analyses where the same dataset was used to illustrate
the established measures of cost-effectiveness (such as ICER, INB, and CEAC).

After inspection of the normal quantile–quantile plots, both the cost and effectiveness were lognor-
mally distributed, and they were used on the log scale for inference on the ICER. Similar results were
obtained using different transformations in the Box–Cox family.

The prednisone and mitoxantrone treatment was less costly (Δ̂C = −1717.07) and more effective
(Δ̂E = 12.78). Then, ÎCER = −134.35, with a 95% confidence interval (−11922, 569) using Fieller’s
theorem [3]. Because this interval includes the value zero, the ICER analysis fails to reject the null

3982

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3976–3986



I. BEBU, T. MATHEW AND J. M. LACHIN

Table II. 95% and 90% confidence intervals for ΔCEP using the
prostate cancer dataset.

Level U-statistic Delta GPQ

95% (0.003, 0.234) (−0.013, 0.212) (−0.016, 0.209)
90% (0.021, 0.215) (0.004, 0.194) (0.001, 0.191)

CEP, cost-effectiveness probability; GPQ, generalized pivotal quantity.

hypothesis that the combination of prednisone and mitoxantrone is more cost-effective than prednisone
alone. However, this parameter does not provide any information regarding the proportion of subjects
for which prednisone and mitoxantrone will be less costly and more effective than prednisone alone,
information provided by CEP.

The MLE for the CEP obtained using (3) is 0.2366, while the U-statistic estimate (8) is 0.2416. The
95% confidence intervals for the CEP are 0.1602 and 0.3129 using the delta method, 0.1693 and 0.3099
using the GPQ approach, and 0.1699 and 0.3132 using the U-statistic approach. Using the GPQ interval as
illustration, prednisone and mitoxantrone will be cost-effective (more effective and less costly) relative to
prednisone alone for approximately 23.66% of the population, with a 95% confidence interval of 16.93%
and 30.99%. We reiterate that such information cannot be obtained using the ICER parameter.

Let us now consider some of the other parameters mentioned in Section 2. For example, the conditional
probability P(C1 ⩽ C2 |E1 ⩾ E2) can be useful to investigate how likely is it that the first treatment is less
costly for a subject for which it is also more effective. Using the prostate cancer dataset, we estimate that
there is 58.66% chance for prednisone and mitoxantrone to be more effective than prednisone alone (i.e.,
P(E1 ⩾ E2) = 0.5866). Furthermore, there is a 23.66% chance for prednisone and mitoxantrone to be
less costly and more effective compared with prednisone alone (i.e., P(C1 ⩽ C2 &E1 ⩾ E2) = 0.2366).
Therefore, for a subject for which the prednisone and mitoxantrone treatment is more effective, there is
40.3% (= 0.2366/0.5866) chance that it is also less costly.

The values for 𝛿C and 𝛿E can be selected based on clinical relevance or patient preference. For example,
assume an improvement of at least four quality-adjusted life weeks is of interest, while an increase in cost
of at most 25% relative to the mean cost in the placebo group is considered acceptable, which leads to
𝛿E = 4 and 𝛿C = 7259.7. The estimate of CEP(𝛿C, 𝛿E) is 0.2923, and 95% confidence intervals using the
GPQ approach and the U-statistics approach are 0.2055 and 0.3578 and 0.2145 and 0.3701, respectively.

For the prostate cancer dataset, the parameter ΔCEP is estimated to be 9.91%. Confidence intervals for
ΔCEP are reported in Table II. At 5% nominal level, the U-statistic approach rejects the null hypothesis
that ΔCEP = 0, while the delta method and GPQ fail to do so. This is likely explained by the fact that
the U-statistic approach leads to confidence intervals with coverage lower than the nominal 95% level in
small sample sizes (Table I), while the parametric approaches maintain the nominal level. All methods
reject the null hypothesis at 10% level.

6. Discussion

Previous measures of cost-effectiveness, such as ICER, INB, and CEAC, are functions only of the mean
parameters, and therefore they describe average effects. The proposed CEP parameter and its variants,
defined as the probability of higher effectiveness and lower cost for one treatment versus the other treat-
ment, have a very simple and intuitive interpretation. Furthermore, an advantage of the CEP over the other
existing measures is that it is invariant with respect to (possibly different) monotone transformations of
cost and effectiveness.

Clearly, choosing one treatment over another cannot be based on just a single measure of cost-
effectiveness. Thus, the proposed probabilistic measures are not meant to replace the traditional
approaches based on the ICER and INB; rather, they provide complementary information that allows
both the payer and the patient to make better informed decisions.

The CEP measure is defined in terms of the SE quadrant, while the ΔCEP measure is based on the
SE and NW quadrants. As suggested by the Associate Editor and one of the reviewers, depending on
the application, all quadrants may be of interest. The probabilities of the four quadrants can be esti-
mated jointly both parametrically and non-parametrically. For example, the non-parametric approach
can be employed by using a multivariate U-statistics with kernels corresponding to the SE, NW, and NE
quadrants, and inference is then based on the large sample asymptotics for multivariate U-statistics [22].

Copyright © 2016 John Wiley & Sons, Ltd. Statist. Med. 2016, 35 3976–3986
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However, the parameters considered herein can be obtained and studied using univariate U-statistics, and
the multivariate case was not included to avoid unnecessary technicalities.

Three inference approaches for CEP have been employed in our work, the delta method, the GPQ
approach, and a U-statistic approach. These methods were evaluated through simulations and illustrated
using data from a clinical study. With the exception of the delta method, the proposed statistical inference
approaches performed well. The U-statistic approach was slightly liberal for small sample sizes (n = 50
and 100) but performed very well for n ⩾ 150, while the GPQ method was extremely accurate for all
sample sizes and parameter configurations considered. Several extensions were considered, including
related measures of effectiveness and tests for comparing two treatments based on the CEP parameter.

Both INB and CEAC analyses involve a willingness-to-pay parameter 𝜆. While in most applications
it is possible to define 𝜆, in others, it may be more difficult. Consider the case of retinopathy progression
detected at periodic examinations in patients with type 1 diabetes. Different schedules of examinations
can be compared in terms of cost (proportional to the frequency of visits) and effectiveness, quantified
as the elapsed time from the actual onset of progression to the next visit (or the time that progression
went undetected). The willingness-to-pay parameter 𝜆 is the monetary value assigned to each 1 unit (say
1 month) of time undetected, but it is not clear what the value should be. The parameters 𝛿C and 𝛿E
considered herein are on the effectiveness and cost scales, respectively, and may be easier to define. In
the retinopathy progression example, the 𝛿C value can be a percentage (say 10%) of the mean cost in the
control group, while 𝛿E may be a clinically meaningful difference that can be elicited from a physician
or the patient, say 2 months.

The proposed probabilistic measure of cost-effectiveness was illustrated using continuous cost and
continuous effectiveness. Clearly, the CEP measure is valid more generally for ordinal cost and effective-
ness. As an example, consider the case of continuous cost with pdf f and binary effectiveness. The joint
distribution of (C,E) can be written as the product of the marginal distribution of cost and the conditional
distribution of effectiveness given cost,

gC,E(c, e) = P(E = e|C = c) ⋅ f (c),

where e = 0, 1, c > 0. Then

CEP = A1 + A2 + A3,

where

A(e1, e2) = ∫
∞

0

(
∫

∞

c1

P
(
E2 = e2|C = c2

)
⋅ f2

(
c2

)
dc2

)
P
(
E1 = e1|C = c1

)
⋅ f1

(
c1

)
dc1 ,

and A1 = A(0, 0), A2 = A(1, 0), and A3 = A(1, 1). This does not simplify even in the common case when
the cost is assumed normally distributed and the effectiveness follows a logistic model. Notice that the
non-parametric inference approaches (e.g., bootstrapping and U-statistics) remain valid in the general
case of ordinal cost and effectiveness, while parametric approaches are less appealing because of the lack
of closed form formulas in such general cases. The non-parametric methods proposed herein are also
particularly appealing when dealing with highly skewed data (especially costs) and with two-part models
for excess zeros [3].

The possibility of using a probabilistic measure in order to assess cost-effectiveness was attempted by
Willan [15]. That measure is based on the INB and is not invariant under transformations. The measure
was criticized by O’Hagan and Stevens [23], who note that the measure could lead to conclusions that
contradict what one obtains from the ICER under skewed distributions for the net benefit; see figures 1
and 2 in their paper, and the related discussion. Notice that this criticism does not apply to the probability
measures introduced herein, as they are invariant under monotone transformations. These measures also
provide considerable flexibility, because they can be tailored to suit the purpose of the cost-effectiveness
investigation. For example, the probabilistic measure can be defined so as to infer whether a certain
treatment is less costly for the subjects for whom it is more efficient.

The goal of personalized medicine is to identify the best treatment for a particular subject based on
his or her individual characteristics. However, the proposed CEP measures do not take into account
subject-level characteristics. Rather, they are marginal or ‘unadjusted personalized’ measures of cost-
effectiveness, because they appropriately quantify the proportion of subjects for whom one treatment is
cost-effective compared with another treatment. Extending the measures presented herein to account for
subject-level characteristics is currently under investigation.
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Appendix A: The delta method

If √
n(B − 𝛽) → N (0,Σ∗) ,

then √
n (h(B) − h(𝛽)) → N

(
0,∇h(𝛽)TΣ∗∇h(𝛽)

)
,

where ∇h denotes the gradient of h.
In our case

B =
(
�̂�C1, �̂�E1, �̂�111, �̂�122, �̂�112, �̂�C2, �̂�E2, �̂�211, �̂�222, �̂�212

)
,

𝛽 =
(
𝜇C1, 𝜇E1, 𝜎111, 𝜎122, 𝜎112, 𝜇C2, 𝜇E2, 𝜎211, 𝜎222, 𝜎212

)
,

and

Σ∗ = diag
(
Σ∗

1,Σ
∗
2

)
,

where

Σ∗
i = diag

(
Σi∕ni,Ωi∕

(
ni − 1

))
,

Ωi =
⎛⎜⎜⎝

2𝜎2
i11 2𝜎2

i12 2𝜎i12𝜎i11
2𝜎2

i12 2𝜎2
i22 2𝜎i12𝜎i22

2𝜎i12𝜎i11 2𝜎i12𝜎i22

(
1 + 𝜌2

i

)
𝜎i11𝜎i22

⎞⎟⎟⎠ ,
with 𝜌i = 𝜎i12∕

√
𝜎i11𝜎i22, i = 1, 2.

Appendix B: U-statistics approach for ΔCEP

Asymptotically, one has √
N(V − ΔCEP) ∼ N

(
0, 𝜎2

V

)
,

where

𝜎2
V = N

n1
𝜉V

10 +
N
n2

𝜉V
01,

with

𝜉V
10 = Cov

(
v
(
X1,Y1

)
, v

(
X1,Y

′
1

))
𝜉V

01 = Cov
(
v
(
X1,Y1

)
, v

(
X′

1,Y1

))
,

where X1 (= (C1,E1)) and X′
1 refer to values of cost and effectiveness for two different subjects from the

first group, and likewise Y1,Y
′
1 from the second group, all independent, and N = n1 + n2.

Sample estimates can be obtained as follows:

𝜉V
10 = 1

n1 ⋅ n2 ⋅
(
n2 − 1

) ⋅
n1∑

i=1

n2∑
j=1

n2∑
k=1,k≠j

v
((

Ci,Ei

)
,
(
Cj,Ej

))
⋅ v

((
Ci,Ei

)
,
(
Ck,Ek

))
−

[
1

n1 ⋅ n2
⋅

n1∑
i=1

n2∑
j=1

v
((

Ci,Ei

)
,
(
Cj,Ej

))]2

,

𝜉V
01 = 1

n1 ⋅
(
n1 − 1

)
⋅ n2

n1∑
i=1

n1∑
j=1,j≠i

n2∑
k=1

v
((

Ci,Ei

)
,
(
Ck,Ek

))
⋅ v

((
Cj,Ej

)
,
(
Ck,Ek

))
−

[
1

n1 ⋅ n2
⋅

n1∑
i=1

n2∑
j=1

v
((

Cj,Ej

)
,
(
Ck,Ek

))]2

.
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